Ocean Energy Introduction
Ocean waves and tidal and global ocean currents offer significant potential for electrical power generation. The development of ocean energy technologies is a critical step in the expansion of our nation’s energy portfolio. The Coastal Studies Institute (CSI), along with the Colleges of Engineering at North Carolina State University, NCA&T and UNC Charlotte are leading the North Carolina Renewable Ocean Energy Research Program designed to bring together the coastal, electrical and industrial engineering needed for the research and development of technologies to harness this form of energy and develop strategies for future integration into the energy needs for the state of North Carolina. The mission of CSI’s Ocean Energy program is to “Conceptualize, research, design, construct, operate and market new technologies to harness the energy of the ocean.”

Research scientists and engineers in the North Carolina Renewable Ocean Energy Research Program are investigating how and where to harness the energy available in the Gulf Stream, a warm water western boundary current that flows northward off the coast of North Carolina. Research scientists in the North Carolina Renewable Ocean Energy Research Program have also been involved in designing components of wave energy devices and helping to test wave energy devices in the open ocean designed by independent companies. The Ocean Energy category of the NC Renewable Energy Challenge asks students to create a turbine device that works in an underwater current or wave field, and consider the logistical details of harnessing the movement of ocean water and converting it to a useable form of electrical energy.

Ocean Energy Facts!
Be prepared to answer these questions about ocean energy. Use resources available at coastalstudiesinstitute.org or do your own research to answer them.

1. Where do waves come from?
 Where does the power in a wave come from? How does that energy move? Where does it end up?
2. What is the Gulf Stream?
 What makes this a possible energy source? Where does the energy come from to create the Gulf Stream? Where does the Gulf Stream end up?
3. What are some examples of devices that utilize ocean hydropower? Where are ocean energy devices currently in use? Give a brief explanation of how they work.
4. The ocean is a constantly changing environment. What are some challenges to deploying equipment in the ocean?
5. What kind of technological breakthroughs are needed to make ocean power more accessible for the general public?
6. What does the future of power look like?

Ocean Currents Rules

Ocean Currents Divisions

There are three age divisions:

1. 4th – 8th grade
2. 9th to 12th grade
3. Undergraduate and graduate students

Building Guidelines

Size

Your ocean energy device must fit in a current flow tank that is 12 inches wide by 6 ft long and 7 inches deep. A water current is produced from an aquarium pump and directed down one side of a tank to create water flow. The device built needs to fit in the tank, in water that is 7 inches deep and with a flow rate of 700 gallons per hour. Your device should be able to stay in one place without holding onto it (it needs to be freestanding or attach to the bottom of the tank in some way.) To assist with mooring there will be a plate anchored to the bottom of the flow tank. The mooring plate will have eyebolts 4 inches apart that can be used for anchoring.
You can use any type of material to build your ocean energy device, but keep in mind that everything will get wet as we are testing it in a water tank. Repurposing materials is highly encouraged, and creativeness and ingenuity will be noted in the judging process.

Generators
KidWind produces a generator: https://www.vernier.com/products/kidwind/wind-energy/kw-gen/ that may be the simplest path. It is also possible to create your own generator.

Blades
There are a wide variety of possible blade shapes and materials. Remember the size requirements when constructing your blades. Consider the difference between air and water, and what kind of designs may be more efficient in a water current.

Towers and Mooring
Your underwater turbine needs to be supported in some way so that you are not holding it in the current. The device can be moored or anchored to the bottom of the tank using the provided eye bolts, the sides of the tank or float. As long as you are not holding it in place, it will be allowed. Towers can be built out of almost anything; designing a system to hold current energy turbines in place is something engineers are currently working on to make Gulf Stream power feasible.

Design Rules
1. Each team must have its own turbine. Teams cannot share a turbine.
2. Power must be generated completely from the water pump flow.
3. You must have wires that allow for your water turbine to be hooked up to the Vernier Software that will display energy generation.
4. Your device will be placed under load – KidWind generators will be tested using a 30-ohm load.
5. You cannot use pre-manufactured turbine blades or air foils.
6. Your current turbine must be “free standing” in the tank and not require your assistance during testing.

Testing
1. The testing will occur in a large current tank. The tank is powered by a magnetic drive utility pump that pumps 700 gallons per hour.
2. The dimensions of the flow tank are 8 ft long with a testing lane that is 13 inches wide, and the tank is 7 inches deep.
3. The tank is made of fiberglass and will be filled with freshwater.
4. Each team will get 3 chances to create the highest energy output from their devices. There will be a 60 second testing period followed by 2 minutes to redesign or adjust. That sequence will be repeated 3 times.
5. If your turbine breaks or the mooring breaks you can have 1 additional testing opportunity. You will have 2 minutes to fix or adjust your ocean current turbines.
5. In order to receive full marks for functionality, your current turbine must be able to start producing power without external assistance once the water pump is activated.
6. Once the session begins, you will be given two minutes to set up your water current turbine.
7. During testing, the current tank will be running constantly. We will collect power and energy output data between 30–60 seconds. Your energy output score will be calculated using a Vernier data-logging system that collects voltage and amperage readings simultaneously.

How You Will be Tested and Evaluated

30% - Total Energy Generation
25% - Device Design and Creativity
30% - Written Documentation of Design and logistical plan for using the Gulf Stream as an energy source.
15% - Instant Challenges

Total Energy Generation (30%)
The highest energy output over the 30-60 second trial. Each team’s energy output will be ranked relative to other competitors. Each team will receive points based on rank.
 a. Rank Method – The highest producing turbine will receive full available points (30), and there is a 2 to 5-point deduction for each lower ranked turbine.
 b. Ratio Method – Turbines ranked by energy output percentage. If top turbine produces 100 watts and receives 35 points, a turbine that produces 80 watts would receive 80% or 28 points.

Device Design and Creativity (25%)
This is a 15-20 minute interview conducted by NC Renewable Energy Challenge judges intended to gain a better understanding your design process. You should be prepared to discuss/defend your choices and the end design. Judges may ask:
 a. What kind of challenges did you face when building your turbine?
 b. How did you waterproof your device?
 c. How did you determine pitch of the blades?
 d. What materials did you use? Why? How did they work underwater?
 e. Did you redesign your turbine during the process?

Written Documentation (30%)
Students need to have some type of written material to display their design processes and their knowledge of ocean energy, turbines and water characteristics. Please also include details about the logistics of capturing energy from the Gulf Stream. Consider how the energy is harnessed, moved, stored, etc. These plans allow lots of room for creative thinking. Each team can decide how to show their knowledge through reports, notebooks, blue prints, Powerpoint or Prezi presentations, poster board or even video (4-minute maximum and you are required to provide all AV equipment).

Instant Challenges (15%)
These challenges do not require any preparation. They will include some kind of engineering activity and will add 15% to the final score. Many times, Instant Challenges use the ratio method for awarding points. In some cases, participation is enough to earn points.

Ocean Waves Rules

Ocean Waves Divisions
This competition is for undergraduate and graduate students.

Building Guidelines

Size
Your wave conversion device must fit into the OMEY wave tank at CSI. The tank’s dimensions are 12 meters (39.37 ft.) long by 3.2 meters (10.499 ft.) wide and around 1.3 meters (4.265 ft.) deep. For more information please visit: http://www.omeylabs.com/design/4584895376. There will be 4 wave parameters that can be used for testing. Each device will get 3 separate opportunities to test their devices in the tank. Your device should be able to stay in one place without holding onto it (it needs to be freestanding or attach to the bottom of the tank in some way.) To assist with mooring there will be a plate anchored to the bottom of the tank. The mooring plate will have eyebolts which can be used for anchoring.

Materials
You can use any type of material to build your ocean energy device, but keep in mind that everything will get wet as we are testing it in a water tank. Repurposing materials is highly encouraged, and creativeness and ingenuity will be noted in the judging process.

Generators
KidWind produces a generator: https://www.vernier.com/products/kidwind/wind-energy/kw-gen/ that may be the simplest path. It is also possible to create your own generator.

Ocean Energy Conversion Devices
There are a wide variety of wave conversion devices already in use, and there are certainly many engineering designs that have not been tested yet. Creative designs will be considered in the judging.

Mooring
Your wave energy device needs to be moored or anchored to the bottom of the tank using the provided eye bolts, or attached to the sides of the tank. As long as you are not holding it in place than it will be allowed. Design of moorings to hold devices in place in wave environments is an active area of research by engineers and wave device developers.

Design Rules
1. Each team must have its own ocean energy device. Teams cannot share a wave energy conversion device.
2. Power must be generated completely from the wave action within the tank.
3. You must have wires that allow for your wave energy conversion device to be hooked up to the Vernier Software that will display energy generation.
4. Your device will be placed under load – KidWind generators will be tested using a 30-ohm load.
5. Your wave energy conversion device must be “free standing” in the tank and not require your assistance during testing.

Testing
1. The testing will occur in the Omey wave thank that is 12 meters long by 3.2 meters wide and around 1.3 meter deep.
2. The wave parameters could be:
 a. wave height: .10 meters, period: .5 second
 b. wave height: .10 meters, period: 1 second
 c. wave height: .10 meters, period: 2 seconds
 d.
3. The tank is made of metal with large glass windows, and will be filled with freshwater.
4. Each team will get 3 chances to create the highest energy output from their devices. There will be a 60 second testing period followed by 2 minutes to redesign or adjust. That sequence will be repeated 3 times.
5. If your wave device breaks or the mooring breaks you can have 1 additional testing opportunity. You will have 2 minutes to fix or adjust.
6. In order to receive full marks for functionality, your wave device must be able to start producing power without external assistance once the waves are activated.
6. Once the session begins, you will be given two minutes to set up your ocean energy device. There will be access to the tank from stairs above the tank, and devices will be retrieved with a net.
7. During testing, the wave tank will be powered up to run for the 2-minute testing time. We will collect power and energy output data between 30–60 seconds. Your energy output score will be calculated using a Vernier data-logging system that collects voltage and amperage readings simultaneously.

How You Will be Tested and Evaluated
40% - Total Energy Generation
25% - Device Design and Creativity
35% - Written Documentation of Design and logistical plan for harnessing wave energy.

Total Energy Generation (40%)
The highest energy output over the 30-60 second trial. Each team’s energy output will be ranked relative to other competitors. Each team will receive points based on rank.
 a. Rank Method – The highest producing device will receive full available points (30), and there is a 2 to 5-point deduction for each lower ranked device.
 b. Ratio Method – Devices ranked by energy output percentage. If top device produces 100 watts and receives 35 points, a device that produces 80 watts would receive 80% or 28 points.
Device Design and Creativity (25%)
This is a 15-20 minute interview conducted by NC Renewable Energy Challenge judges intended to gain a better understanding your design process. You should be prepared to discuss/defend your choices and the end design. Judges may ask:
 a. What kind of challenges did you face when building your devices?
 b. How did you waterproof your device?
 c. How did you determine orientation of the devices moving components relative to the waves?
 d. What materials did you use? Why? How did they work underwater?
 e. Did you redesign your wave device during the process?

Written Documentation (35%)
Students need to have some type of written material to display their design processes and their knowledge of ocean energy, waves and water characteristics. Please also include details about the logistics of capturing energy from near shore environments. Consider how the energy is harnessed, moved, stored, etc. These plans allow lots of room for creative thinking. Each team can decide how to show their knowledge through reports, notebooks, blue prints, Powerpoints or Prezi presentations, poster board or even video (4-minute maximum and you are required to provide all AV equipment).

Resources
1. North Carolina Renewable Ocean Energy Project – this website provides some details on the work being done in North Carolina to harness energy from ocean waves and currents.
 https://www.coastalstudiesinstitute.org/research/coastal-engineering/renewable-ocean-energy-project-overview/

2. Bureau of Ocean Energy Management (BOEM) Ocean Current Energy
 https://www.boem.gov/Ocean-Current-Energy/